If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3X^2-60X-80=0
a = 3; b = -60; c = -80;
Δ = b2-4ac
Δ = -602-4·3·(-80)
Δ = 4560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4560}=\sqrt{16*285}=\sqrt{16}*\sqrt{285}=4\sqrt{285}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{285}}{2*3}=\frac{60-4\sqrt{285}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{285}}{2*3}=\frac{60+4\sqrt{285}}{6} $
| 06+0.08n=32 | | 52/x=-4/41 | | (-3+x)(x+1)(x-1)=0 | | c/0+25=27 | | 4.1(m+3)m=1.5 | | 3-4x÷5=7 | | 2x(x+4)=90 | | 45=x–20;x= | | Y=-0.5^2+5x-8 | | (2x-10)=(4x+5) | | 15x-5=7x+4 | | -4=3h-7 | | 5y−9=5y−9=26 | | 3975+6x=995+17.95 | | 15x+75=1575 | | 9(-3a)= | | 12x+23+20=103 | | 15-4h=-1 | | -5x+23=175 | | 2-4r=14 | | F=3.43+0.03k | | G(x)=400(.70) | | -4c+10=18 | | v+4.3=7.05 | | (3x+10)(6x-28)+36=180 | | -10+40x=2400 | | -2w^2+7w+15=0 | | -6x+x-16=180 | | -0.43=-0.7x-0.35+0.5x | | 9.5-2y=-28 | | 7+2(j-4)=7-2j+8 | | X-3(x-2)=22 |